Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 9(1): 65, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461173

RESUMO

Despite epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have shown remarkable efficacy in patients with EGFR-mutant non-small cell lung cancer (NSCLC), acquired resistance inevitably develops, limiting clinical efficacy. We found that TET2 was poly-ubiquitinated by E3 ligase CUL7FBXW11 and degraded in EGFR-TKI resistant NSCLC cells. Genetic perturbation of TET2 rendered parental cells more tolerant to TKI treatment. TET2 was stabilized by MEK1 phosphorylation at Ser 1107, while MEK1 inactivation promoted its proteasome degradation by enhancing the recruitment of CUL7FBXW11. Loss of TET2 resulted in the upregulation of TNF/NF-κB signaling that confers the EGFR-TKI resistance. Genetic or pharmacological inhibition of NF-κB attenuate the TKI resistance both in vitro and in vivo. Our findings exemplified how a cell growth controlling kinase MEK1 leveraged the epigenetic homeostasis by regulating TET2, and demonstrated an alternative path of non-mutational acquired EGFR-TKI resistance modulated by TET2 deficiency. Therefore, combined strategy exploiting EGFR-TKI and inhibitors of TET2/NF-κB axis holds therapeutic potential for treating NSCLC patients who suffered from this resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dioxigenases , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , NF-kappa B/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , /uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética
2.
Thorac Cancer ; 14(33): 3309-3316, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789589

RESUMO

BACKGROUND: The optimal extent of mediastinal lymph node dissection is still under debate. This study aimed to investigate the prognostic impact of complete dissection of right paratracheal lymph nodes (LNs) in right-sided non-small cell lung cancer (NSCLC) and evaluate the potential patient population who will particularly benefit from right paratracheal node dissection (RPND). METHODS: Between January 2009 and December 2019, we retrospectively reviewed 2650 patients with primary right-sided NSCLC who underwent pulmonary surgery with lymphadenectomy in the Western China Lung Cancer Database. A total of 2447 patients received both 2R and 4R LNs dissection (complete RPND group), 162 patients received only 2R or 4R LNs dissection (incomplete RPND group), and 41 patients received neither 2R nor 4R LNs dissection (no RPND group). Overall survival (OS) was analyzed. RESULTS: The metastasis rates in stations 2R and 4R were 6.5% and 8.0%, respectively. In stage N2 patients, the frequency of involvement of stations 2R/4R was 74.8%. The complete RPND group had a significantly better survival than the incomplete and no RPND group (5-year OS, 79.5% vs. 72.7% vs. 65.5%; p < 0.001). In the multivariate analysis, status of RPND (incomplete RPND vs. complete RPND: HR 1.45, 95% CI: 1.10-1.90; p = 0.009; no RPND vs. complete RPND: HR 2.25, 95% CI: 1.37 to 3.69; p = 0.001), age, gender, tumor size, histological type, pTNM stage, pT stage, pN stage, and adjuvant treatment were independent factors for OS. CONCLUSIONS: Complete RPND brings survival benefits to patients with right-sided NSCLC. We suggest complete RPND as a standard procedure for patients with right-sided NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos Retrospectivos , Pneumonectomia/métodos , Metástase Linfática/patologia , Linfonodos/cirurgia , Linfonodos/patologia , Prognóstico , Excisão de Linfonodo/métodos , Estadiamento de Neoplasias
3.
Clin Cancer Res ; 28(10): 2180-2195, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247901

RESUMO

PURPOSE: To investigate the antitumor activity of a mitochondrial-localized HSP90 inhibitor, Gamitrinib, in multiple glioma models, and to elucidate the antitumor mechanisms of Gamitrinib in gliomas. EXPERIMENTAL DESIGN: A broad panel of primary and temozolomide (TMZ)-resistant human glioma cell lines were screened by cell viability assays, flow cytometry, and crystal violet assays to investigate the therapeutic efficacy of Gamitrinib. Seahorse assays were used to measure the mitochondrial respiration of glioma cells. Integrated analyses of RNA sequencing (RNAseq) and reverse phase protein array (RPPA) data were performed to reveal the potential antitumor mechanisms of Gamitrinib. Neurospheres, patient-derived organoids (PDO), cell line-derived xenografts (CDX), and patient-derived xenografts (PDX) models were generated to further evaluate the therapeutic efficacy of Gamitrinib. RESULTS: Gamitrinib inhibited cell proliferation and induced cell apoptosis and death in 17 primary glioma cell lines, 6 TMZ-resistant glioma cell lines, 4 neurospheres, and 3 PDOs. Importantly, Gamitrinib significantly delayed the tumor growth and improved survival of mice in both CDX and PDX models in which tumors were either subcutaneously or intracranially implanted. Integrated computational analyses of RNAseq and RPPA data revealed that Gamitrinib exhibited its antitumor activity via (i) suppressing mitochondrial biogenesis, OXPHOS, and cell-cycle progression and (ii) activating the energy-sensing AMP-activated kinase, DNA damage, and stress response. CONCLUSIONS: These preclinical findings established the therapeutic role of Gamitrinib in gliomas and revealed the inhibition of mitochondrial biogenesis and tumor bioenergetics as the primary antitumor mechanisms in gliomas.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 27(24): 6800-6814, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593527

RESUMO

PURPOSE: To investigate the therapeutic role of a novel telomere-directed inhibitor, 6-thio-2'-deoxyguanosine (THIO) in gliomas both in vitro and in vivo. EXPERIMENTAL DESIGN: A panel of human and mouse glioma cell lines was used to test therapeutic efficacy of THIO using cell viability assays, flow cytometric analyses, and immunofluorescence. Integrated analyses of RNA sequencing and reverse-phase protein array data revealed the potential antitumor mechanisms of THIO. Four patient-derived xenografts (PDX), two patient-derived organoids (PDO), and two xenografts of human glioma cell lines were used to further investigate the therapeutic efficacy of THIO. RESULTS: THIO was effective in the majority of human and mouse glioma cell lines with no obvious toxicity against normal astrocytes. THIO as a monotherapy demonstrated efficacy in three glioma cell lines that had acquired resistance to temozolomide. In addition, THIO showed efficacy in four human glioma cell lines grown as neurospheres by inducing apoptotic cell death. Mechanistically, THIO induced telomeric DNA damage not only in glioma cell lines but also in PDX tumor specimens. Integrated computational analyses of transcriptomic and proteomic data indicated that THIO significantly inhibited cell invasion, stem cell, and proliferation pathways while triggering DNA damage and apoptosis. Importantly, THIO significantly decreased tumor proliferation in two PDO models and reduced the tumor size of a glioblastoma xenograft and a PDX model. CONCLUSIONS: The current study established the therapeutic role of THIO in primary and recurrent gliomas and revealed the acute induction of telomeric DNA damage as a primary antitumor mechanism of THIO in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Desoxiguanosina/análogos & derivados , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Camundongos , Nucleosídeos/uso terapêutico , Proteômica , Tionucleosídeos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA